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A class of receivers called “conditionally nulling receivers” is defined for quantum noise
limited optical communications. These receivers have the ability to decide at each moment
in time whether or not to coherently combine a predetermined local oscillator field with
the received optical field, prior to performing an energy measurement (photodetection)
on the combined field. Conditionally nulling receivers are applicable to pulse position
modulation (PPM) and related modulation schemes, which have the property that, at
each moment in time, the transmitted signal is in one of only two states, ON or OFF.
The local oscillator field which may or may not be added by the receiver is an exact
replica of the negative of the received ON field; hence, the receiver can exactly null the
ON signal if the ON signal is present and the receiver chooses to use the local field.

An ideal conditionally nulling receiver achieves very nearly the same error probability
(within a multiplicative factor varying from 1 to 2.15) as the optimum quantum measure-
ment for quantum noise limited detection of M-ary PPM signals. In contrast, other known
receiving methods, such as direct, heterodyne, and homodyne detection, are exponentially

suboptimum.

The performance of receivers which are only approximately conditionally nulling
receivers, due to imperfect nulling, is also investigated for the quantum limited PPM
detection problem. Imperfect nulling is assumed to be caused by a phase discrepancy
between the received ON field and the local nulling field. The performance of the imper-
fect conditionally nulling receiver is found to degrade rapidly to that o f a direct detection
receiver in the presence of nonzero phase error.

l. Introduction

In many optical communications applications, the pre-
dominant “noise” that limits system performance is the
fundamental uncertainty of measurement predicted by quan-
tum theory. However, explicit calculation of the ultimate
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communication inaccuracy legislated by quantum noise has
been accomplished for very few problems (Refs. 1-4), and the
specification of physical receiving structures for achieving
optimum performance is virtually nonexistent (except, see
Ref. 5). Conventional receiver structures based on familiar
physical devices exhibit peculiar quantum noise limited




behavior of their own, but their performance falls short of the
fundamental quantum limit.

In this article a new receiver structure is defined for quan-
tum limited optical communications. Receivers with this
structure have the ability to decide at each moment in time
whether or not to coherently combine a predetermined local
oscillator field with the received optical field, prior to per-
forming an energy measurement (photodetection) on the
combined field. These receivers are termed *‘conditionally
nulling receivers,” because the local oscillator field which may
or may not be added by the receiver is an exact replica of the
negative of one of the possible received fields. An ideal condi-
tionally nulling receiver achieves very nearly the same error
probability (within a multiplicative factor varying from 1 to
2.15) as the optimum quantum measurement for quantum
noise limited detection of M-ary PPM signals. In contrast,
other known receiving methods, such as direct, heterodyne,
and homodyne detection, are exponentially suboptimum.

The purposes of this article are threefold: (1) to set forth
a general definition of the class of conditionally nulling
receivers; (2) to broaden the definition to include receivers
which are only approximately conditionally nulling receivers;
and (3) to compare the performance of ideal and imperfect
conditionally nulling receivers applied to the quantum noise
limited M-ary PPM detection problem.

ll. Applicable Modulation Schemes

The useful application of conditionally nulling receivers is
restricted to PPM and related modulation schemes, which have
the following characteristic: at each moment in time, the
transmitted signal is in one of only two states, ON or OFF.
The OFF state is assumed to correspond to a field of ampli-
tude zero, and the ON state corresponds to a single nonzero
field. At any given instant in time, there may be m possible
signals in the ON state and m, possible signals in the OFF
state, and m, m, may vary with time. Multiple amplitude
levels to help distinguish among the m ON signals are not
permitted, but the common ON state amplitude level may
vary with time. Any receiver attempting to decipher this type
of signaling can be viewed as an assembler of binary informa-
tion, favoring either the m ON signals or the m, OFF signals
collectively, extracted from the received signal at each instant
in time.

M-ary PPM signaling fits nearly in this category, because
at every moment in time (M - 1) of the M possible signals are
OFF and only one possible signal is ON. PPM is presentéd as
the prototypical modulation scheme for conditionally nulling
receivers, and all of the performance analysis in this article is
based on PPM.

Three examples of applicable modulation schemes are
shown in Fig. 1a, b, ¢. Figure la shows standard 4-ary PPM,
and Fig. 1b shows a PPM-complementary modulation scheme,
which is discussed at length in the next section. Figure lc
shows a 4-slot coding scheme in which 6 possible messages
are represented by 6 different pulse doublets.

. An Unconditional Role Reversal Strategy

It is well known that direct detection does not distinguish

.symmetrically between ON and OFF signals. For example,

under quantum noise limited conditions, the detection of a
single quantum of energy is sufficient to positively identify
the ON signal, but equally conclusive confirmation of the OFF
signal is not possible. It is reasonable to ask whether simple
direct detection optimally utilizes this inherent asymmetry
as it attempts to distinguish at each moment in time between
m ON signals and m, OFF signals. Perhaps more useful infor-
mation could be obtained if the m signals were OFF and the
m,, signals were ON, rather than vice-versa.

A simple, complete reversal of the roles of the ON and
OFF signals does not necessarily lead to improvement. For
example, consider quantum limited minimum error prob-
ability detection of the ‘“‘role-reversed” M-ary PPM signal set
shown in Fig. 1b. With standard PPM signaling, if the jth
hypothesis H; is true, the signal is ON during the jth signaling
slot and OFF during the remaining (M - 1) slots. On the other
hand, with “role-reversed” PPM, the signal is OFF during the
jth slot and ON during the remaining (M - 1) slots, under
hypothesis H;. A direct detection receiver is certain to record
a zero energy measurement during at least one slot (the OFF
period of the true signal), and it errs only if additional zero
energy measurements are also obtained. A performance expres-
sion for this problem is easy to write down, if equal a priori
probabilities and equal ON signal slot energies are assumed.

M-1
PL= Y (M—,;‘) P -pMm (D)

Here, Pe' is the error probability, p is the probability of
measuring zero energy from the ON signal during a single
slot (p = e7Z, where E is the mean detected ON signal slot
energy in units of photons), and m indexes the number of
slots in addition to the true signal slot in which no photons
are observed. The sum in (1) may be collapsed to the form

b -
P, = a5 [(1-p) - 1+Mp] )
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The corresponding performance expression for straightforward
PPM detection is well known,

M-1
Py =" p 3

and it can be shown that
P;’ <P; , forallpe [0, 1] “@)

Thuys, “role-reversed” PPM appears to be inferior to straight-
forward PPM, even with no consideration given to its ap-
parently increased requirements for average transmitter
power (requiring (M - 1)E detected photons per symbol
instead of E).

IV. The Ideal Conditionally Nulling Receiver
A. General Description

It turns out that the conclusion of the previous section is
no longer valid if the ON-OFF role reversal can take place
at the receiver and if the receiver is able to continually choose
whether or not to perform the reversal, based on its prior
observations. Note that the receiver can accomplish the role
reversal on uncorrupted ON-OFF signals by coherently
adding the negative of the ON signal prior to detection, i..,
by nulling the ON signal. Exact role reversal at the receiver
may prove impossible under two nonideal conditions: (1) if
the received signal has been corrupted by a noisy channel;
or (2) if the receiver cannot produce an exact replica of the
ON signal.

Any receiver which has the power to precisely reverse the
roles of the ON and OFF signals and, in addition, is able to
decide at each instant in time ¢ whether or not to perform
this operation, based on its own observations prior to ¢, is
termed an ideal conditionally nulling receiver, or ideal condi-
tional nuller for short. A receiver which tries to act like a
conditional nuller, but falls short due to an inability to per-
form the ON-OFF role reversal exactly, is called a condi-
tionally nulling receiver with imperfect nulling.

A block diagram of the conditionally nulling receiver
structure is shown in Fig, 2. The received field at any given
time ¢ is either the ON signal, denoted S(¢), or else 0. At the
receiver a replica of the negative of S(¢) is generated. Provi-
sion is made to coherently combine this field with the received
field, but the combining is subject to an on-off switch. The
combined field (or received field only) impinges upon a photo-
detector, and the output of the photodetector (with assumed
conditionally Poisson statistics) is used both to control the
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position of the on-off switch and eventually to infer which
message was sent.

B. The Quantum Limited PPM Detection Problem

It has been shown elsewhere (Ref. 6) that there exists a
conditionally nulling receiver for quantum limited detection of
M-ary PPM signals which approaches the error probability per-
formance of the optimum quantum measurement within a
multiplicative factor no greater than 2.23, over all ranges of
M and slot energy E. This result is significant because the
performance of the direct detector in (3) is exponentially
inferior to the optimum. In this section, the structure of the
ideal conditional nuller and its comparative performance are
briefly described.

1. Nulling strategy and decision algorithm. The ideal con-
ditionally nulling receiver for the quantum limited PPM
problem is defined as follows. During the first signaling slot,
the ON signal is nulled and an energy measurement is per-
formed. If no photons are detected, this is considered a partial
confirmation of the first hypothesis relative to the remaining
(M - 1), and the receiver will continue to believe this hypoth-
esis unless it subsequently obtains sufficiently conclusive
evidence in favor of another. Given this state of affairs at
the end of the first signaling slot, the receiver decides to forgo
nulling the ON signal for the remaining (M - 1) slots and
henceforth to simply direct detect, so that any future evidence
impeaching the first hypothesis will automatically confirm
with certainty one of the others, If, on the other hand, one or
more photons are detected during the first signaling slot, the
first hypothesis is completely contradicted and the receiver’s
task is reduced to the (M - 1)-ary version of the same problem,
since no information discriminating among the remaining
(M - 1) hypotheses has yet been obtained. In this case, the
receiver proceeds to the second signaling slot and again nulls
the ON signal, this time looking for partial confirmation of the
second hypothesis if no photons are detected or complete
denial of it otherwise. In the former case the receiver discon-
tinues nulling, while in the latter it proceeds to use nulling
to test for the third hypothesis, and so forth. The receiver
simply continues to null the ON signal until such time as it
obtains partial confirmation of a specific hypothesis by the
measurement of zero energy throughout the corresponding
PPM slot, and afterward it direct detects through all remaining
time slots.

The nulling strategy and decision algorithm for the ideal
conditional nuller can be represented by a binary tree diagram,
as illustrated in Fig. 3 for the case M = 4. The four levels of
branches in the tree correspond to the four PPM slots. Each
node in the tree is labeled “N” or “D” to denote whether
nulling mode or direct detection mode is used during the next




slot. The branches are labeled “=1" or “0” to designate
whether or not at least one photon is detected during the
corresponding slot. Some paths (such as those containing two
“> 1 branches from “D” nodes) have probability zero under
the assumed ideal conditions, and these are marked “impos-
sible”, The end nodes in the tree which are reached with non-
zero probability are all marked with the corresponding opti-
mum decision.

2. Performance. The performance of the ideal conditional
nuller in quantum limited conditions is easy to calculate
recursively, and a simple closed form expression is obtained
for the case of equal a priori probabilities and equal slot
energies F; for details, see Ref. 6.

P, = =2 [(L-P" - 1+ Mp] )

€

where p = ¥ as before. Note that the error probability in
(5) is smaller by a factor of p than the error probability
obtained for the unconditional nulling strategy in (2).

The error probability achievable by the optimum quan-
tum measurement is also known for this problem, and it is
given by (Ref. 3).

P* = %{-} WIFOI-D7 - Vich)® (6

€

The three error probabilities 2, P:, P? are plotted in Fig. 4a,
b, ¢ as a function of the average detected slot energy E, for
M = 2, 16, 256. The conditional nuller’s performance is seen
to track the performance of the optimum quantum measure-
ment very closely in all situations. In fact, it can be demon-
strated numerically that the deviation is never more than a
multiplicative factor of 2.15; 1.e.,

1<P/P<215 forallE,M (7

On the other hand, the performance of the direct detection
receiver is exponentially inferior to that of the optimum
measurement. This inferiority is most apparent in the M = 2
graph, in which the (logarithmic) slope of the near-optimum
P_ curve is exactly double the (logarithmic) slope of the
PO curve. As M increases, larger values of E are needed before
the direct detection curve begins to diverge from the other
two.

V. Conditionally Nulling Receivers with
Imperfect Nulling

The potential performance advantage of conditionally
nulling receivers for quantum limited PPM detection has been
demonstrated, but there remains a delicate practical problem
in implementing the nulling operation. Perfect amplitude and
phase coherence is required in order to exactly null the ON
signal, and such precision is probably impossible for the
receiver to achieve, Thus, it is important to investigate how the
performance of a conditional nuller degrades with imperfect
nulling,

A. The Effect of imperfect Nulling

A general definition of the class of conditional nullers with
imperfect nulling will not be given here. As stated earlier,
imperfect nulling at the receiver might be inevitable in princi-
ple due to random channel disturbances imparted to the trans-
mitted signal, or else it may result simply from the receiver’s
inability to produce an exact replica of a deterministic ON
signal. Only the second case is considered in this article.

A conditionally nulling recelver with imperfect nuiling
differs from an ideal conditional nuller in one important
respect. In the absence of nulling, both receivers continually
obtain by direct detection information distinguishing an ON
signal of mean slot energy! E from an OFF signal of slot
energy 0. After perfect nulling, the ON signal is converted
to slot energy O and the OFF signal to mean slot energy £, a
perfect reversal of roles. After imperfect nulling, on the other
hand, the ON signal is reduced to some nonzero slot energy
E ;, and the OFF signal is imparted slot energy £’ not neces-
sarily equal to E. It is assumed that the nulling operation is
at least accurate enough that E; < E'. However, the slot
energies £, E; will always be less distinguishable via direct
detection than the slot energies £, 0, and so the efficacy of
attempting an imperfect nulling operation is drawn into
question. :

B. The Quantum Limited PPM Detection Problem

The remainder of the article evaluates the impact of imper-
fect nulling on the performance of the ideal conditionally
nulling receiver found to be near-optimum for the quantum
limited PPM detection problem.

1. A reasonable nulling strategy. A slight generalization of
the ideal conditional nuller’s operation is required in order

1For simplicity, it is assumed that the mean slot energies £, E(’,, E' are
derived from mean conditional Poisson intensity functions which are
constant over a slot time. This assumption eliminates the need to
worry about count data records over time intervals finer than the slot
interval.
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to adapt it to imperfect nulling. With imperfect nulling, the
nulled signal can never be entirely contradicted, and in fact
may actually be corroborated relative to the opposite signal
by the detection of a small, nonzero number of photons.
Thus, a natural generalization of the conditionally nulling
receiver described earlier involves setting a threshold @ to
determine whether to continue or discontinue nulling after
observations during each signaling slot. The generalized receiver
starts off in the nulling mode as before, only now the nulling
operation is imperfect. At the end of any signaling slot in
which nulling was used, a decision is made to continue nulling
if the number of photons detected during the slot exceeds 6
and to discontinue nulling if the number does not exceed 4.
As with the ideal conditional nuller, nulling, once discontin-
ued, is never resumed. On the other hand, a downgraded
hypothesis, corresponding to a signaling slot in which nulling
was used and counts exceeded threshold, could later be
revived and chosen as most likely by the receiver if more
damaging negative evidence is ultimately obtained against all
the other (M - 1) hypotheses.

The conditional nuller with imperfect nulling just described
is not necessarily the best conditional nuller subject to the
same nulling inaccuracy. It is simply a straightforward adapta-
tion of the ideal conditional nuller with perfect nulling that
was found to be near-optimum for the given detection
problem,

The description in this section has detailed only the basic
structure of .the imperfect conditional nuller, the rules by
which it prescribes what type of measurement to perform, i.e.,
to null or not to null prior to detection. It still remains to
specify the algorithm by which the receiver optimally com-
bines the outcomes of all its measurements to arrive at a
decision. For the ideal conditional nuller, the decision rules
and nulling rules went hand-in-hand, and no additional analysis
was needed.

2. The MAP decision rule. For the nonideal conditional
nuller, the derivation of the optimum decision rule is still
somewhat simplified (for the quantum limited problem) by
the hard decisions that take place if photons are ever detected
in direct detection mode. The receiver must combine the
always inconclusive information obtained in nulling mode
with the possibly conclusive evidence obtained in direct detec-
tion mode. To minimize error probability, the receiver uses a
maximum a posteriori probability (MAP) decision rule.

The MAP rule for the nonideal conditional nuller is derived
in the Appendix, under the assumptions of equal a priori
probabilities, equal slot energies, constant nulling inaccuracy
from slot to slot, and constant (but selectable) threshold level
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8. A slightly suboptimum version of the rule is used here. It
can be stated as follows:

(1) If no switchover from nulling to direct detection
occurs, choose the slot with the fewest counts. (In
case of a tie for fewest counts, select randomly from
the tied slots.)

(2) If a switchover occurs after slot k, and nonzero energy
is later detected in slot 4, i > k, choose H,.

(3) If a switchover occurs after slot &k, and no further
counts are recorded, choose H,.

This statement of the decision rule is exactly optimum if the
nulling strategy threshold parameter 6 satisfies

E+E'-E,
< B e
<6, =T (E'[E}) ®

If 6 exceeds 0, the true MAP decision rule consists of rules 1
and 2 exactly as stated, together with a refined version of
rule 3:

(3*%) If switchover occurs after slot &, and no further counts
are recorded, choose H;, unless & <M and the number
of counts during slot k exceeds 6,. In the latter case,
randomly select from £, ., -+, Hy,.

The difference between rules 3 and 3* is minor, and it does
not significantly affect the numerical results. Rule 3 is used
in this paper because it allows a much clearer presentation of
the performance analysis than rule 3*.

A tree diagram depicting the behavior of the nonideal
conditional nuller is given in Fig. 5 for the case M = 4. The
notation conventions are the same as in Fig. 3. The branches
leaving the direct detection nodes are the same as before, but
the branches leaving the nulling nodes are now marked “> 6
and “<0” to indicate the nonzero threshold used to deter-
mine when to discontinue nulling. The decisions taken at the
end nodes are the same as those in Fig. 3, with the exception
that the top node on the tree is now reachable with nonzero
probability and an optimum decision rule at that node is now
well-defined.

3. Performance. The error probability ﬁe achieved by the
nonideal conditional nuller can now be calculated. Use as a
conditioning variable %, the slot which triggers a switchover
from nulling to direct detection, and let 'ni, 1 <i< M, denote
the number of counts recorded during the ith slot. With the
assumed nulling strategy, slot k triggers the switchover if and
only if n, < 6 and n, > for 1 €i< k- 1. Note that the
possibility that & = M is included in this definition, even




though in this case the switchover occurs too late to actually
be implemented. There is one remaining possibility, that of
no switchover at all (i.e., n, > 8 for 1 < i< M), and this case
is treated separately below.

The error probability I;G is expanded in the form

1 M M
B o=ty Z S i) PrClE) )

=1 k=1

—
it

where

Mk

Pr(correct detection and no switchoverlHj)

(10)

=L
T M
1

ey
n

and Pr(ClkHy) is the conditional probability of correct
detection, given H; and switchover after slot k. The latter
probability is eas11y calculated from decision rules 2 and 3,

1-¢E | k<y
PrClkH) = {1 , k=7 (11)
0 , k>j

The conditional probability for the switchover location,
given H,, is evaluated as

(1 -P@,EN**P@®,E" Jk<j

[1-P@EN*'PE) k=]

Pr(k\H) =
[1-P@.EN*2[1-PO.E)] POE") ,k>]

(12)

where P(V,x) denotes the cumulative Poisson distribution
function with mean x.

P(Nx) = p(rx) (13)

i

where

e (14)

S%

p(nx)

After insertion of (11) and (12) into (9) and considerable
algebraic manipulation, the expression for P, collapses to

1- -PEENY | &_
MP(0,E") -
(15)
The final item needed for P _is the evaluation of the term 7,
Expand this probability by conditioning on #;, then apply
decision rule 1. For an exact calculation, a second condition-
ing variable is also needed. This variable, m, denotes the
number of slot counts n, i % j, which exactly tie r9 for lowest
count.

= (1-P@,E)-¢F)

X [p(n, E]™ [1 - P(ny, ENM1 (16)

The sum over m is evaluated in the same manner as the one
in (1) and the sum over #; is independent of j. Thus, (16)
reduces to

o0

___1_ I; l;
= M;;l p(n,E) {[1-P(n- LED™ - [1-P(RENM}
)

Note that, for the ideal conditional nuller, 6 =0, P(,E )- 1,
P(O,E") =&, andp(nE )=0forn=>6 +1. Thus,y= Oand
(15) reduces to (5).

4. Numerical results for imperfect nulling due to phase
error only. The error probability expression (15) is a function
of the number of PPM slots M, the mean slot energy E, the
two nulling mode slot energies £, E', and the nulling strategy
threshold parameter 6. In this section, the dimensionality of
this problem is reduced from five to three by (numerically)
optimizing the nulling strategy threshold and by assuming
that the nulling field is subject to phase inaccuracy only. In
this case, the nulling mode slot energies are related to the
signal slot energy by

E = E|1-6%1?% = 2E(1 - cosp)

(18)
E'=E

where ¢ is the phase discrepancy (assumed constant) between
the nulling field generated at the receiver and the negative of
the received ON field.
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Error probabilities were numerically evaluated for various
values of phase error ¢, with the nulling strategy threshold
optimized. Some representative curves are shown in Fig. 6a,
b, ¢, for M = 2, 16, 256, respectively. The cusps evident in
these curves occur at transitions between discrete values of the
optimum threshold.

Superimposed on the phase error performance curves in
Fig. 6a, b, ¢ are the corresponding curves from Fig. 4a, b, ¢
for the direct detection receiver and the ideal conditionally
nulling receiver. It is seen from Fig. 6a, b, ¢ that small values
of phase error are sufficient to cause much of the performance
advantage of the ideal conditional nuller to disappear. For
example, approximately half the performance advantage
(measured logarithmically) of the ideal conditional nuller is
erased by phase errors of ¢ = 4°,2° 1/2°, forM=2, 16, 256,
respectively,

It is interesting to noce that the error probability curves
for the imperfect conditional nuller (with optimized threshold)
are upper bounded by the error probability curves for the
direct detection receiver. This is a general characteristic of
the assumed nulling strategy that also holds for larger amounts
of nulling inaccuracy than those assumed in Fig. 6a, b, c,
even though for large nulling error the information extracted
during nulling mode is very small. This property results from
the fact that the error probability performance of the direct

detection receiver for the quantum limited PPM detection
problem is unaffected if data from the first slot is unavailable.
An imperfect conditional nuller starting in nulling mode can
always set its nulling strategy threshold high enough that
direct detection mode is essentially guaranteed for the final
(M - 1) slots. Therefore, it can always at least match the per-
formance of the direct detection receiver; with optimized
threshold, there will be some improvement. Thus, it always
pays, however slightly, for the imperfect conditional nuller
to start out in nulling mode.

VI. Conclusions

In this article a general class of optical receivers called
“conditionally nulling receivers” was postulated for PPM and
related modulation schemes to take advantage of the inherent
asymmetry in the information obtained by direct detection of
ON and OFF signals. An ideal conditional nuller achieves
essentially the same error probability as the optimum quantum
measurement for quantum noise limited PPM detection.
Analysis of the conditionally nulling receiver structure was
extended to assess the effects of imperfections in the nulling
process. It was found that the near-optimum performance of
the conditionally nulling receiver degrades rapidly, albeit
gracefully, to the performance of a direct detection receiver
in the presence of small nulling field phase errors.
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Fig. 3. Nulling strategy/decision algorithm of ideal conditional nuller
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Appendix

The following three observations lead directly to the opti-
mum decision rule stated in the text:

(1) If photons in any positive number are detected during
a signaling slot in which nulling is rot used, the corre-
sponding hypothesis has a posteriori probability unity
and is automatically selected. If no photons are detected
during the signaling slots in which nulling is not used,
then all of the hypotheses corresponding to these slots
have equal a posteriori probabilities.

(2) Among the hypotheses corresponding to signaling slots
in which nulling s used, the one with maximum
a posteriori probability is the one whose signaling slot
yielded the fewest detected photons. In case of ties in
count totals, the corresponding a posteriori probabili-
ties are equal. In particular, since the threshold @ is
constant, this implies that any slot which triggers a
switchover from nuiling to direct detecting is “king of
the hill” relative to all preceding slots.

(3) If a switchover from nulling to direct detecting occurs
after the kth slot and no photons are recorded in direct
detection mode during the remaining (M~ k) slots,
then the decision algorithm depends only on the num-
ber of detected photons in the kth slot, n,. There is a
threshold

E+E -E

o = TWEE) D

such that H is selected if n, < 6,, and a random
choice among Hy.q, -+, Hy is made if n, > 6,.
In particular, this implies that H, is always chosen
in this situation if the switchover threshold @ is no
greater than the decision threshold 6.
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Justification of the above statements is based on pairwise
comparison of the a posteriori probabilities of hypotheses
within two separate categories, corresponding to signaling
slots in which nulling is or is not used. Note that, for the PPM
signal set, a pairwise comparison between the a posteriori
probabilities of two hypotheses depends only on data obtained
during the two corresponding signaling slots. Thus, the most
probable hypothesis within each category can be determined
by successive application of binary PPM MAP decision princi-
ples. The rule for the direct detection category (statement 1)
is the usual rule for direct detection of PPM signals under
noise-free conditions. The rule for the nulling category (state-
ment 2) is similar to the rule for PPM signals in background
noise, except here the true signal slot is characterized by
lowest energy instead of highest energy. The final test to
complete the MAP decision is to compare the a posteriori
probabilities of the leaders from each category. The likeli-
hood ratio A, between hypotheses H; and H, k+ 1 <i<M,
is based entirely on the data from slots ¥ and i. Under the
conditions of statement 3, during slot k& nulling is used and
n, counts are observed, while during slot { nulling is not used
and 0 counts are observed. Thus

EN* g
-0 e o, 1
Pr(n,,0\H,) n,!
A " Pr(n,,01H) (A-2)
B i (E')nk )
7 e E e F
n!
This expression leads to the threshold test
A,=1 ifand only if n <9, (A-3)

with 8, defined in (A-1).




